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Abstract

In this paper, we give the first examples of connected Polish groups that
have ample generics, answering a question of Kechris and Rosendal. We show
that any Polish group with ample generics embeds into a connected Polish
group with ample generics and that full groups of type III hyperfinite ergodic
equivalence relations have ample generics. We also sketch a proof of the fol-
lowing result: the full group of any type III ergodic equivalence relation has
topological rank 2.

Ample generics were introduced by Kechris and Rosendal [KR07] as a fundamen-
tal property underlying many phenomenons observed for various non-archimedean1

Polish groups. A Polish group has ample generics if for every n ∈ N, the diagonal
conjugacy action of G on Gn has a comeager2 orbit. In particular, G must have a
comeager conjugacy class, which excludes locally compact groups from this class of
groups as was recently shown by Wesolek [Wes13].

Yet, as far as non-archimedean Polish groups are concerned, a number of inter-
esting examples arise: the group S∞ of all permutations of the integers, the auto-
morphism group of the rooted∞-regular tree and the homeomorphism group of the
Cantor space, to name a few (for S∞ and Aut(N<N), see [KR07], for Homeo(2N),
this is a result of Kwiatkowska, see [Kwi12]).

One of the main motivations for finding groups with ample generics is that they
satisfy a very strong property called the automatic continuity property: if G is a
Polish group with ample generics, every group homomorphism from G to a separable
group H has to be continuous ([KR07, Thm. 1.10]). The automatic continuity
property means we can recover the topology on the group from its algebraic structure
only. In particular, the topology on a Polish group G with ample generics is the
unique possible Polish group topology on G.
†Research supported by the Interuniversity Attraction Pole DYGEST and Projet ANR-14-

CE25-0004 GAMME.
1A topological group is non-archimedean if it admits a basis of neighborhoods of the identity

consisting of open subgroups. Every non-archimedean Polish group is a closed subgroup of the
Polish group S∞ of all permutations of the integers (see [BK96, Thm. 1.5.1]). The group S∞ is
endowed with the topology of pointwise convergence on the discrete set N.

2A subset of a Polish space is comeager if it contains a dense countable intersection of open
sets, so that it is large in the Baire category sense.
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Another motivation is the Bergman property: a group G has the Bergman prop-
erty if every isometric G-action on a metric space has a bounded orbit (the action
need not be continuous). This implies that every isometric affine G-action on a
Hilbert space has a fixed point, that is, G has property (FH) as a discrete group.
Besides, every G-action on a tree fixes either a vertex or an edge (G has prop-
erty (FA)). In the context of non-archimedean Polish groups, Kechris and Rosendal
showed that every oligomorphic group with ample generics has the Bergman prop-
erty, which applies to the three examples above.

Outside the non-archimedean world, however, ample generics often fail badly.
For instance, in the group of measure-preserving bijections of a standard probability
space, in the unitary group of a separable Hilbert space or in the isometry group of
the Urysohn space, all conjugacy classes are meager (see [Ros09, Sec. 4]). This led
Kechris and Rosendal to ask the following question: is there a Polish group with
ample generics that is not a non-archimedean group?

In this paper, we exhibit two classes of examples of connected Polish groups
with ample generics. Since non-archimedean groups are totally disconnected, these
examples provide a positive answer to Kechris and Rosendal’s question. Note that
this question has simultaneously been answered by Malicki [Mal15]. His examples
differ significantly from ours. Indeed, they arise as Polishable subgroups of S∞ so
they are totally disconnected. Here is our first result.

Theorem A (Cor. 8). Every Polish group with ample generics embeds into a
contractible Polish group with ample generics.

Let us briefly describe the construction behind this theorem. Given a Polish
group G and a standard probability space (X,µ), let L0(X,µ,G) denote the group
of measurable maps from X to G. It is a contractible Polish group which embeds G
via constant maps. Theorem A is then a consequence of the following observation.

Theorem B (Cor. 7). Whenever G has ample generics, so does L0(X,µ,G).

This theorem generalizes the well-known fact that ample generics carry to count-
able powers, and the proof is essentially the same.

The second class of examples we consider comes from ergodic theory, and will
yield a continuum of pairwise non-isomorphic simple contractible Polish groups with
ample generics.

A Borel bijection of the standard probability space (X,µ) is called a non-
singular automorphism of (X,µ) if for every Borel subset A of X, we have
µ(A) = 0 if and only if µ(T (A)) = 0. It is ergodic if every T -invariant Borel
set has measure 0 or 1. Given a non-singular automorphism T , define its full
group to be the group [T ] of all non-singular automorphisms S of (X,µ) which
preserve every T -orbit, that is, for every x ∈ X, there exists n ∈ Z such that
S(x) = T n(x). Then [T ] is a Polish group for the uniform metric du defined by
du(S, S

′) := µ({x ∈ X : S(x) 6= S ′(x)}).
A non-singular ergodic automorphism of (X,µ) is called type III if it preserves

no σ-finite measure equivalent to µ.

Theorem C (Thm. 19). Let T be a type III ergodic automorphism. Then the full
group [T ] has ample generics.

2



Full groups of type III ergodic automorphisms are contractible, as was shown by
Danilenko in [Dan95]. Besides, Eigen ([Eig81]) has proved that they also are simple.
Therefore, the preceding theorem provides examples of simple contractible Polish
groups with ample generics, as opposed to the highly non-simple groups we obtain
with Theorem B. Also note that, by a result of Miller ([Mil04, Thm. 8.1]), these full
groups satisfy the Bergman property.

Furthermore, Dye’s reconstruction theorem is true in the type III setting: every
abstract isomorphism between full groups of type III automorphisms3 comes from
an orbit equivalence4 (for a general theorem from which this statement follows,
see [Fre04, 384D]). In particular, using Krieger’s classification of type III ergodic
automorphisms up to orbit equivalence into types III0, IIIλ (0 < λ < 1) and III1
[Kri69], we see that Theorem 19 provides a continuum of pairwise non-isomorphic
simple contractible Polish groups with ample generics.

1 The space of measurable maps L0(X,µ, Y )

In this section, we recall the definition of the Polish space L0(X,µ, Y ) and establish
a few basic lemmas on its topology.

By definition, a probability space (X,µ) is standard if it is isomorphic to the
interval [0, 1] endowed with the Lebesgue measure. Throughout the paper, (X,µ)
will denote a standard probability space.

Definition 1. Let Y be a Polish space. Then L0(X,µ, Y ) is the set of Lebesgue-
measurable maps from X to Y up to equality µ-almost everywhere.

We endow L0(X,µ, Y ) with the topology of convergence in measure, which
says that two maps are close in this topology if they are uniformly close on a set of
large measure. To be more precise, fix a compatible metric dY on Y . Then for ε > 0
and f ∈ L0(X,µ,G), let

Vε(f) := {g ∈ L0(X,µ, Y ) : µ({x ∈ X : d(f(x), g(x)) < ε}) > 1− ε}.

The topology generated by the family (Vε(f))ε,f is the topology of convergence in
measure.

This topology does not depend on the choice of a compatible metric dY on
Y ([Moo76, Cor. of Prop. 6]). Moreover, it is Polish ([Moo76, Prop. 7]) and
contractible: assume X = [0, 1] and let y0 ∈ Y be an arbitrary point. Then an
explicit contraction path is given by

L0(X,µ, Y )× [0, 1] → L0(X,µ, Y )

(f, t) 7→ ft : x 7→
{

y0 if x > t,
f(x) otherwise.

The following lemma is an easy consequence of the definition of the topology of
convergence in measure.

3More generally, of type III equivalence relations (see Section 3 for a definition).
4An orbit equivalence between T and T ′ is a non-singular automorphism of (X,µ) which

maps T -orbits to T ′-orbits bijectively. It is easily checked that S is an orbit equivalence between
T and T ′ if and only if S[T ]S−1 = [T ′].
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Lemma 2. Let Y be a Polish space, and let U be an open subset of Y . Then for
every ε > 0, the set

VU,ε := {f ∈ L0(X,µ, Y ) : µ({x ∈ X : f(x) ∈ U}) > 1− ε}

is open in L0(X,µ, Y ).

Proof. Let f ∈ VU,ε and let A = {x ∈ X : f(x) ∈ U}. Fix a compatible metric dY
on Y . Since U is open, the set A can be written as the increasing union of the sets
An’s, where An = {x ∈ A : dY (f(x), Y \ U) > 1

n
}. By assumption, the set A has

measure greater than 1−ε, so we can find N ∈ N such that µ(AN) > 1−ε. Now, if δ
is a positive real such that δ < 1

N
and δ < µ(AN)− (1− ε), we see that Vδ(f) ⊆ VU,ε,

hence VU,ε is open.

Given a subset B of Y , let

L0(X,µ;B) := {f ∈ L0(X,µ, Y ) : ∀x ∈ X, f(x) ∈ B}.

A subset of a topological space is called Gδ if it can be written as a countable
intersection of open sets.

Lemma 3. Let Y be a Polish space, and let B be a Gδ subset of Y . Then the set
L0(X,µ;B) is a Gδ in L0(X,µ, Y ).

Proof. Write B =
⋂
n∈N Un where each Un is open. Then clearly L0(X,µ;B) =⋂

n∈N L0(X,µ;Un). Now, L0(X,µ;Un) =
⋂
k∈N VUn,2−k , so it is Gδ by the previous

lemma, so L0(X,µ;B itself is Gδ.

Lemma 4. Let Y be a Polish space, and let B be dense subset of Y , then L0(X,µ;B)
is dense in L0(X,µ;Y ).

Proof. Fix a compatible metric dY on Y . Since Y is separable, we can find a count-
able subset of B which is still dense in Y : in other words, we may as well assume
that B is countable. Enumerate B as {yn}n∈N, and fix ε > 0 as well as a function
f ∈ L0(X,µ, Y ). For every x ∈ X, let n(x) be the smallest integer n ∈ N such that
dY (f(x), yn) < ε. It is easily checked that the map x 7→ n(x) is measurable, so that
the function g : x 7→ yn(x) belongs to L0(X,µ;B). But by construction, we actually
have dY (f(x), g(x)) < ε for all x ∈ X, and in particular g ∈ Vε(f), which completes
the proof.

Recall that a subset B of a Polish space Y is comeager if it contains a dense Gδ

set. What follows is an immediate consequence of the previous two lemmas.

Lemma 5. Let Y be a Polish space and let B be a comeager subset of Y . Then
L0(X,µ;B) is a comeager subset of L0(X,µ;Y ).
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2 L0(X,µ,G) has ample generics whenever G does
Theorem 6. Let G be a Polish group acting continuously on a Polish space Y . If
the action of G on Y has a comeager orbit, then so does the action of L0(X,µ;G)
on L0(X,µ;Y ).

Proof. Let y0 be an element of Y whose orbit is comeager; let y0 be the corresponding
constant function in L0(X,µ;Y ). We show that the orbit of y0 in L0(X,µ;Y ) is
comeager.

First, let us remark that the orbit of y0 is thus described:

L0(X,µ;G) · y0 = {f ∈ L0(X,µ;Y ) : f(x) ∈ G · y0 for almost all x ∈ X}. (1)

Indeed, if f ∈ L0(X,µ, Y ) is in the orbit of y0, then f clearly belongs to the above
set. Conversely, assume that f(x) ∈ G · y0 for almost all x ∈ X. Since every
Lebesgue-measurable map coincides with a Borel map on a full measure set, we
may as well assume that f is a Borel map. We can then change f on a Borel set
of measure 0 so that f(x) ∈ G · y0 for every x ∈ X. For all x ∈ X, there exists
an element gx in G such that f(x) = gx · y0. We would like to find those gx’s in
a measurable way. To this end, we apply the Jankov-von Neumann uniformization
theorem (see [Sri98, Cor. 5.5.8]) to the following Borel set

S = {(x, g) ∈ X ×G : f(x) = g · y0},

which projects to the whole space X. We thus obtain a Lebesgue-measurable map
ϕ ∈ L0(X,µ;G) whose graph is contained in S, that is, f = ϕ · y0, hence f belongs
to the L0(X,µ,G)-orbit of y0.

Now, using the notations introduced at the end of the previous section, we may
rewrite Equation (1) as

L0(X,µ;G) · y0 = L0(X,µ;G · y0).

Since G · y0 is comeager, so is the set L0(X,µ;G · y0) by Lemma 5. Thus, the orbit
of y0 is comeager in L0(X,µ;Y ).

Recall that a topological group G has ample generics if for all n ∈ N, the
diagonal conjugacy action of G on Gn has a comeager orbit, where the diagonal
conjugacy action is given by g · (g1, ..., gn) = (gg1g

−1, ..., ggng
−1).

Corollary 7. Let G be a Polish group with ample generics. Then the group L0(X,µ;G)
also has ample generics.

Proof. Fix n ∈ N. There is a natural identification between the groups L0(X,µ;G)n

and L0(X,µ;Gn), so it suffices to apply Theorem 6 to the diagonal action of G on
Gn.

Since G embeds into the contractible group L0(X,µ;G) via constant maps, we
also have the following result.

Corollary 8. Let G be a Polish group with ample generics. Then G embeds into a
contractible Polish group with ample generics.
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3 Type III full groups
We begin this section by recasting the definitions from the introduction in the more
general setting of non-singular equivalence relations.

Two Borel probability measures are equivalent if they have the same null sets.
A Borel bijection of the standard probability space (X,µ) is non-singular if

the probability measure T∗µ defined by T∗µ(A) = µ(T−1(A)) is equivalent to µ.
Similarly, a Borel action of a countable group Γ on (X,µ) is called non-singular if
all the elements of Γ define non-singular Borel bijections of (X,µ).

A Borel equivalence relation on X is called countable if all its classes are count-
able. For instance, if Γ is a countable group acting on X in a Borel manner, define
the equivalence relation RΓ by

(x, y) ∈ RΓ ⇐⇒ x ∈ Γ · y.

Then RΓ is a countable Borel equivalence relation. In fact, by a result of Feldman
and Moore [FM77], every countable Borel equivalence relation arises this way: for
every countable Borel equivalence relation R, there exists a countable group Γ and
a Borel action of Γ on X such that R = RΓ.

Define the pre-full group of a countable Borel equivalence relation R on (X,µ)
to be the group of all Borel bijections T : X → X such that for all x ∈ X,
(x, T (x)) ∈ R.

Definition 9. A countable Borel equivalence relation R on (X,µ) is non-singular
if every element of its pre-full group is non-singular.

It is well-known that a countable Borel equivalence relation R on (X,µ) is non-
singular if and only if it comes from a non-singular action of a countable group (see
e.g. [KM04, Prop. 8.1]).

The full group [R] of a non-singular equivalence relation R is by definition
the quotient of its pre-full group by the normal subgroup consisting of all elements
whose support have measure zero5. Equivalently, one can see the full group as a
subgroup of Aut∗(X,µ), where Aut∗(X,µ) denotes the group of all non-singular
Borel bijections of (X,µ) up to equality on a full measure set.

Let R and S be two non-singular equivalence relations. Then a map T ∈
Aut∗(X,µ) is said to induce an orbit equivalence between R and S if it maps
bijectively almost every R-orbit to an S-orbit, that is, if for almost all x ∈ X,

T ([x]R) = [T (x)]S .

It is easy to see that T ∈ Aut∗(X,µ) induces an orbit equivalence between R and
S if and only if T [R]T−1 = [S]. Let us now give the most basic invariants of orbit
equivalence.

A non-singular equivalence relation R on (X,µ) is ergodic if every Borel set
A ⊆ X that is a reunion of R-classes has measure 0 or 1. If R is an ergodic
non-singular equivalence relation, we say that

5Note that the fact that this is a normal subgroup is a consequence of the fact that R is
non-singular.
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• R is type II1 if there exists a probability measure ν equivalent to µ which is
preserved by R, that is, such that every element T of the pre-full group of R
satisfies T∗ν = ν;

• R is type II∞ if there exists a σ-finite measure ν equivalent to µ which is
preserved by R;

• R is type III otherwise.

These cases are mutually exclusive, and here, we will focus on type III ergodic
equivalence relations. Let us give one more definition.

Definition 10. The pseudo-full group [[R]] of a non-singular equivalence relation
R is the set of all injective Borel maps ϕ from X to X such that for all x ∈ dom ϕ,
one has (x, ϕ(x)) ∈ R.

The following proposition is folklore; since we could not find a precise reference
in the literature, we provide a proof.

Proposition 11. Let R be a type III ergodic equivalence relation on (X,µ). Then
for every Borel subsets A,B ⊆ X of positive measure, there exists ϕ ∈ [[R]] such
that dom ϕ = A and rngϕ = B.

The proof follows [HIK74, Lem. 6] closely, where the same statement is proved
in the case when R is generated by a single type III ergodic automorphism of (X,µ).
We need the following lemma, which corresponds to [HIK74, Lem. 3].

Lemma 12. Let R be a type III ergodic equivalence relation on (X,µ). Then for
every Borel subset A of X with positive measure, the restriction of R to A is type
III.

Proof. Let Γ be a countable group such that R = RΓ. Then by ergodicity, one
can find a partition (Bi)i∈N of X \ A such that for every i ∈ N, there exists γi ∈ Γ
such that γi(Bi) ⊆ A. Suppose that the restriction of R to A is not type III: then
it preserves a σ-finite measure ν equivalent to the restriction of µ to A. We then
extend ν to X via the γi’s: for every Borel subset B of X, let

η(B) = ν(A ∩B) +
∑
i∈N

ν(γi(Bi ∩B)).

The σ-finite measure η we obtain is R-invariant and equivalent to µ, contradicting
the fact that R was type III.

Proof of Proposition 11. Let R be a type III ergodic equivalence relation on (X,µ).
We introduce the following notation: for two Borel subsets A,B ⊆ X, write A ≺R B
if there exists ϕ ∈ [[R]] whose domain is equal to A while its range is included in B.
By the Borel version of the Schröder-Bernstein theorem (see [Kec95, Thm. 15.7]),
we see that if A ≺R B and B ≺R A, then there exists ϕ ∈ [[R]] whose domain is
equal A and whose range is actually equal to B. So by symmetry, the proof boils
down to showing that for any A,B ⊆ X of positive measure, one has A ≺R B.
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To this end, consider the restriction R�B of R to B: by the previous lemma, it
is type III. Let Γ be a countable group acting on B such that R�B = RΓ. Applying
[HI69, Thm. 1] to the Γ-action on B, one finds a positive measure subset W ⊆ B
and an infinite subset I ⊆ Γ such that for all γ 6= γ′ ∈ I, the sets γ(W ) and γ′(W )
are disjoint.

Since R is ergodic, we can find a partition (Aγ)γ∈I of A such that for every
γ ∈ I one has Aγ ≺R W . But then for all γ ∈ I, we have Aγ ≺R γ(W ), and since
(γ(W ))γ∈I is a partition of a subset of B, we deduce that A ≺R B.

4 Full groups as closed subgroups of L0(X,µ,S∞)

This section is devoted to the proof of Theorem C: we want to exhibit examples of
full groups with ample generics. Let us first give some background on the group
S∞ of all permutations of the set N. It is equipped with the topology of pointwise
convergence, which means that a sequence (σn) of permutations converges to σ if
for every k ∈ N, we have σn(k) = σ(k) for n large enough. An explicit basis of
neighborhoods of the identity is provided by the sets

{σ ∈ S∞ : σ�{0,...,N} = id{0,...,N}}

where N ∈ N. Our proof of Theorem C nicely parallels the proof of the fact that
S∞ has ample generics, which was first shown by Hodges, Hodkinson, Lascar and
Shelah ([HHLS93]). First, we need to define the topology on full groups.

Given a non-singular equivalence relation R, endow its full group [R] with the
uniform topology, induced by the metric du defined by

du(S, T ) := µ({x ∈ X : S(x) 6= T (x)}).

Then [R] is a Polish group.
An equivalence relation is called aperiodic if all its equivalence classes are in-

finite. By an easy modification of the Lusin-Novikov theorem (see [Kec95, Ex.
18.15]), if R is a aperiodic countable Borel equivalence relation, then there exists a
countable family of Borel maps (fi)i∈N from X to X with disjoint graphs, where f0

is the identity map, such that

R =
⊔
i∈N

{(x, fi(x)) : x ∈ X}.

Such a family (fi)i∈N is called a decomposition of R. Note that if R is more-
over non-singular, then for all i ∈ N, the pushforward measure fi∗µ is absolutely
continuous with respect to µ.

The following proposition clarifies the link between full groups and S∞. We will
use this connection throughout the lemmas leading to Theorem C.

Proposition 13. Let R be a non-singular aperiodic equivalence relation on (X,µ).
Let (fi)i∈N be a decomposition of R. Then the function

Φ : [R]→ L0(X,µ,S∞)
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which maps every T ∈ [R] to the measurable function

Φ(T ) : x 7→ (i ∈ N 7→ the unique j ∈ N such that T (fi(x)) = fj(x))

is an embedding.

Proof. It is easy to check that Φ is a well-defined group homomorphism. Next, we
show that Φ is continuous. To this end, let ε > 0 and N ∈ N and consider the
following basic open neighborhood of the identity in L0(X,µ,S∞):

Uε,N =
{
f ∈ L0(X,µ,S∞) : µ({x ∈ X : f(x)�{0,...,N} = id{0,...,N}}) > 1− ε

}
.

Let (Tn) converge to the identity map of X and for each n ∈ N, let An = X\suppTn.
Then µ(An) tends to 1 so for all i ∈ {0, ..., N}, we have µ(f−1

i (An))→ 0. Thus, for
n large enough, we have µ(

⋂N
i=0 f

−1
i (An)) > 1− ε, so that Φ(Tn) ∈ Uε,N . This means

that Φ is continuous.
Moreover, since Φ−1(Uε,0) consists precisely of those T ∈ [R] whose support has

measure less than ε, we see that Φ is injective and is a homeomorphism onto its
image, completing the proof.

Remark. The above proof amounts to identifying X × N and R via (x, i) 7→
(x, fi(x)). The right-action ρ of [R] on R given by ρ(T )(x, y) = (x, T (y)) provides
the embedding Φ : [R]→ L0(X,µ,S∞) of the previous theorem.

In what follows, we say that an n-tuple of permutations (σ1, ..., σn) of a set X
and an n-tuple of permutations (τ1, ..., τn) of a set Y are conjugate if there exists
a bijection σ : X → Y such that for all i ∈ {1, ..., n}, we have σσiσ−1 = τi.

Lemma 14. Let En denote the set of n-tuples (σ1, ..., σn) ∈ Sn
∞ such that the

following two conditions are satisfied:

(1) every 〈σ1, ..., σn〉-orbit is finite, and

(2) for every transitive6 n-tuple (τ1, ..., τn) of permutations of a finite set, there exists
infinitely many 〈σ1, ..., σn〉-orbits such that the restriction of (σ1, ..., σn) to each
of them is conjugate to (τ1, ..., τn).

Then En is Gδ in Sn
∞.

Proof. For a fixed k ∈ N, consider an n-tuple (σ1, ..., σn) ∈ Sn
∞ such that the

〈σ1, ..., σn〉-orbit of k is finite. Let F denote this orbit. If an n-tuple (τ1, ..., τn) ∈ Sn
∞

has the same restriction to F as (σ1, ...σn), then the 〈τ1, ..., τn〉-orbit of k is also equal
to F , so in particular it is finite. Thus, the set of n-tuples (σ1, ..., σn) ∈ Sn

∞ for which
the orbit of k is finite is an open subset of Sn

∞.
Since all the 〈σ1, ..., σn〉-orbits are finite if and only if for all k ∈ N, the 〈σ1, ..., σn〉-

orbit of k is finite, condition (1) defines a Gδ subset of Sn
∞.

To complete the proof, we now need to see why condition (2) also defines a Gδ

subset of Sn
∞.

6By definition, an n-tuple (τ1, ..., τn) of permutations of a finite set is transitive if the associated
〈τ1, ..., τn〉 action is transitive, i.e. has only one orbit.
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Up to conjugation, there are countably many n-tuples of permutations of a finite
set. Moreover, since a countable intersection of Gδ sets is Gδ, we only need to
see that for a fixed transitive n-tuple (τ1, ..., τn) of permutations of a finite set, the
following condition on (σ1, ..., σn) ∈ Sn

∞ defines a Gδ set: there are infinitely many
k ∈ N such that the restriction of (σ1, ..., σn) to the 〈σ1, ..., σn〉-orbit of k is conjugate
to (τ1, ..., τn).

For a fixed k ∈ N, the same reasoning as for condition (1) yields that the following
set Ck is open: the set of (σ1, ..., σn) ∈ Sn

∞ such that the restriction of (σ1, ..., σn)
to the orbit of k is conjugate to (τ1, ..., τn). We deduce the set of (σ1, ..., σn) such
that there are infinitely many k ∈ N with (σ1, ..., σn) ∈ Ck is Gδ, which completes
the proof.

The following lemma mirrors Lemma 14.

Lemma 15. Let R be an aperiodic non-singular equivalence relation on (X,µ). Let
En denote the set of n-tuples (T1, ..., Tn) ∈ [R]n such that the following two conditions
are satisfied:

(1) almost every 〈T1, ..., Tn〉-orbit is finite, and

(2) for every transitive n-tuple (τ1, ..., τn) of permutations of a finite set and almost
every x ∈ X, there are infinitely many y ∈ [x]R such that the restriction of
(T1, ..., Tn) to the 〈T1, ..., Tn〉-orbit of y is conjugate to (τ1, ..., τn).

Then En is Gδ in [R]n.

Proof. The set En of Lemma 14 is Gδ in Sn
∞, so by Lemma 3, we have that

L0(X,µ;En) is a Gδ subset of L0(X,µ;Sn
∞). Through the natural identification

between L0(X,µ,Sn
∞) and L0(X,µ,S∞)n, we then see L0(X,µ,En) as a Gδ subset

of L0(X,µ,S∞)n.
But then, using the notations of Proposition 13, we have that

En = (Φ, ...,Φ)−1(L0(X,µ;En)).

Since Φ is continuous and En is Gδ, we deduce that En is also Gδ.

Remark. We will see during the proof of Theorem C that when R is hyperfinite,
En is a dense Gδ set for all n > 1 (we prove it only in the type III case, but it is true
in general). This actually characterizes hyperfiniteness as a consequence of a result
of Eisenmann and Glasner which was a great source of inspiration to us (see [EG14,
Thm. 1.6 (2)]).

The next lemma is a bit technical to state, and will only be used to show that
En consists of a single conjugacy class in the type III case (Lemma 17).

Lemma 16. Let p ∈ N, consider the product action of the cyclic group Z/pZ on the
space (Z/pZ×A,m×ν), where Z/pZ acts on itself by translation and trivially on A,
m is the normalized counting measure on Z/pZ and (A, ν) is a standard probability
space. Fix (τ1, ..., τn) ∈ Sn

p and (S1, ..., Sn), (T1, ..., Tn) ∈ [RZ/pZ]n such that for
every x ∈ A×Z/pZ, both the (S1, ..., Sn)- and the (T1, ..., Tn)-actions on [x]RZ/pZ are
conjugate to (τ1, ..., τn).

Then (S1, ..., Sn) and (T1, ..., Tn) are diagonally conjugate: there is S ∈ [RZ/pZ]
such that for all i ∈ {1, ..., n}, STiS−1 = Si.
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Proof. View Sp as the group of permutations of Z/pZ. Then L0(A, µ,Sp) acts on
Z/pZ× A as follows: for every f ∈ L0(A, µ;Sp) and (g, x) ∈ Z/pZ× A,

f · (g, x) = (f(x)g, x).

This yields a group homomorphism Ψ : L0(A, µ;Sp)→ [RZ/pZ] which is easily seen
to be an isomorphism.

The group L0(A, ν;Sp) acts on L0(A, ν,Sp)
n = L0(A, ν,Sn

p ) by diagonal con-
jugation. We have to show that (Ψ−1(Si))

n
i=1 and (Ψ−1(Ti))

n
i=1 belong to the same

orbit. By assumption, for all x ∈ A, both (Ψ−1(Si)(x))ni=1 and (Ψ−1(Ti)(x))ni=1 are
conjugate to (τi)

n
i=1.

But by Equation (1) from the proof of Theorem 6, this implies that (Ψ−1(Si))
n
i=1

and (Ψ−1(Ti))
n
i=1 both belong to the L0(A, ν;Sp)-orbit of the n-tuple of constant

maps (τi)
n
i=1, completing the proof.

The following lemma is crucial and mirrors the fact that in Sn
∞, the set En

defined in Lemma 14 consists of a single diagonal conjugacy class.

Lemma 17. Let R be a type III ergodic equivalence relation. Then the set En defined
in Lemma 15 consists of a single diagonal [R]-conjugacy class.

Remark. The lemma is false if we do not assumeR is type III. Indeed, ifR preserves
a σ-finite measure ν, then the measure of the set of x ∈ X with an orbit of size n
becomes an invariant of conjugacy.

Proof. Consider two n-tuples (S1, ..., Sn) and (T1, ..., Tn) in En. We want to find
T ∈ [R] such that for all i ∈ {1, ..., n}, TSiT−1 = Ti.

Up to conjugation, there are only countably many transitive n-tuples (τ1, ..., τn)
of permutations of finite sets. Let (τ1,k, ..., τn,k)k∈N be a choice of representatives
of transitive n-tuples of permutations of finite sets for the conjugacy equivalence
relation. For every k ∈ N, let

Ak :={x ∈ X : the restriction of (S1, ..., Sn) to the 〈S1, ..., Sn〉 -orbit of x
is conjugate to (τ1,k, ..., τn,k)}

Bk :={x ∈ X : the restriction of (T1, ..., Tn) to the 〈T1, ..., Tn〉 -orbit of x
is conjugate to (τ1,k, ..., τn,k)}

Then each Ak is clearly 〈S1, ...Sn〉-invariant while each Bk is 〈T1, ..., Tn〉-invariant.
Moreover, since (S1, ..., Sn) ∈ En and (T1, ..., Tn) ∈ En, we see that both (Ak)k∈N and
(Bk)k∈N are partitions7 of X.

For each k ∈ N, we will build a map ϕk : Ak → Bk belonging to [[R]] which
conjugates (S1, ..., Sn)�Ak

to (T1, ..., Tn)�Bk
. Granting this, the element T ∈ [R]

obtained by gluing together the ϕk’s will conjugate (S1, ..., Sn) to (T1, ..., Tn), which
will complete the proof the lemma.

For the construction, fix k ∈ N and let p ∈ N be the size of the orbit of
〈τ1,k, ...τn,k〉. Then one may as well assume that τ1,k, ..., τn,k belong to the group
Sp of permutations of the set {0, ..., p− 1}. By assumption the 〈S1, ..., Sn〉-orbit of

7By convention, this also means that each Ak (resp. Bk) has positive measure.
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every x in A has cardinality p. Fix a Borel linear order < on X (as one may assume
X = [0, 1], such an order exists). Then the set

A = {x ∈ Ak : x is the <-minimum of its 〈S1, ..., Sn〉 -orbit}

is Borel and we define U ∈ [R] to be the map which is the identity outside of Ak
and sends every x ∈ Ak to its successor for the cyclic order induced by < on the
〈S1, ..., Sn〉-orbit of x. By construction, we have that (U i(A))p−1

i=0 is a partition of
Ak.

Similarly, we can find B ⊆ Bk and V ∈ [R] such that (V i(B))p−1
i=0 is a partition

of Bk.
Since R is type III ergodic, by Proposition 11 there exists ψ ∈ [[R]] such that

ψ(A) = B. Define ψk : Ak → Bk by: for all i ∈ {1, ..., k} and x ∈ U i(A),

ψk(x) = V iψU−i(x).

Clearly, ψk is an orbit equivalence between the equivalence relations induced by
(S1, ..., Sn)�Ak

and (T1, ..., Tn)�Bk
.

To conclude, note that the automorphism U ∈ [R] defined above yields an action
of the cyclic group Z/pZ on Ak =

⊔p−1
i=0 U

i(A) which is conjugate to the action de-
fined in Lemma 16. We may thus apply this lemma to (Si�Ak

)ki=1 and (ψ−1
k Ti�Bk

ψk)
n
i=1

for (τi)
n
i=1 = (τi,k)

n
i=1: we find S ∈ [RZ/pZ] such that for all i ∈ {1, ..., n},

SSi�Ak
S−1 = ψ−1

k Ti�Bk
ψk.

Then, the map ϕk = ψkS ∈ [[R]] conjugates Si�Ak
to Ti�Bk

for all i ∈ {1, ..., n}, so
the lemma is proven.

We need one more lemma before we embark on the proof of Theorem C.

Lemma 18. Let R be a type III ergodic equivalence relation. Then there exists a
subrelation S ⊆ R such that for every (σ1, ..., σn) ∈ Sn

∞, there exists (T1, ..., Tn) ∈
[S] such that for almost every x ∈ X, the (T1, ..., Tn)-action on [x]S is conjugate to
the (σ1, ..., σn)-action on N.

Proof. For this proof, it is easier to think of S∞ as the group of permutations of
Z. Let us write X as a countable partition (Ak)k∈Z, where each Ak has positive
measure. By Proposition 11, for each k ∈ Z we may and do fix ϕk : Ak → Ak+1

belonging to [[R]]. Gluing these ϕk’s together, we obtain T ∈ [R] and let S denote
the equivalence relation induced by T .

There is a natural homomorphism Ψ : S∞ → [S] given by: for all σ ∈ S∞, all
k ∈ Z, and all x ∈ Ak,

Ψ(σ)(x) = T σ(k)−k(x).

Note that for all x ∈ A0, we have Ψ(σ)(T k(x)) = T σ(k)(x). It is then easy to check
that for every (σ1, ..., σn) ∈ Sn

∞, the elements of the full group of S defined by
Ti = Ψ(σi) satisfy the requirements of the lemma.

12



A non-singular equivalence relation R on (X,µ) is hyperfinite if it can be
written as an increasing union of finite Borel equivalence subrelations (i.e. with finite
equivalence classes). By a result of Krieger [Kri69, Thm. 4.1], which is actually true
in the pure Borel setting (see [Wei84, SS88]), these arise exactly as the equivalence
relations induced by non-singular Z-actions. So Theorem C may be reformulated as
follows.

Theorem 19. Let R be a hyperfinite type III ergodic equivalence relation. Then the
full group of R has ample generics.

Proof. Fix n ∈ N. By Lemma 17, the set En consists of a single [R]-conjugacy class
and it is Gδ by Lemma 15.

Therefore, we only have to show that En is dense. SinceR is hyperfinite, it can be
written as an increasing union of finite Borel equivalence subrelations R =

⋃
k∈NRk.

It follows that
⋃
k∈N[Rk] is dense in [R] (see [KT10, Thm. 4.7] whose proof readily

adapts to the non-singular case).
But then, this implies that the set Fn of n-tuples (T1, ..., Tn) ∈ [R]n with only

finite orbits is dense in [R]n. So it suffices to be able to approximate elements of Fn
by elements of En.

To this end, let (T1, ..., Tn) ∈ Fn and fix ε > 0. Since (T1, ..., Tn) only has finite
orbits, we can find a (T1, ..., Tn)-invariant set A of measure less than ε.

Let us fix some (σ1, ..., σn) ∈ En with the notation of Lemma 14. The restriction
of R to A is type III ergodic by Lemma 12, so we can apply Lemma 18 to it. We
thus find an equivalence subrelation S ⊆ R�A and T ′1, ..., T

′
n ∈ [S] such that the

action of (T ′1, ..., T
′
n) on almost every S-class is conjugate to the action of (σ1, ..., σn)

on N.
We then define (T̃1, ..., T̃n) ∈ [R]n by: for every i ∈ {1, ..., n} and x ∈ X,

T̃i(x) =

{
T ′i (x) if x ∈ A,
Ti(x) otherwise.

Because µ(A) < ε, each T̃i is ε-close to Ti. Moreover by ergodicity almost every
R-class meets A, which implies by the construction of (T ′1, ..., T

′
n) that the newly

obtained (T̃1, ..., T̃n) belong to En. Thus En is dense, which ends the proof.

Remark. Using the framework presented in [LM15, Sec. 2.1], one can remove the
ergodicity assumption in Theorem 19.

5 Further remarks
Using Proposition 11, we see that Kitrell and Tsankov’s result on automatic continu-
ity for ergodic full groups of type II1 ([KT10, Thm. 3.1]) readily adapts to the type
III ergodic case. We do not know if all full groups of type III equivalence relation
satisfy the automatic continuity property.

In the proof of Theorem 19 for n = 1, we can replace hyperfiniteness by Rohlin’s
lemma (see [CF65, Thm. 1]) and obtain that [R] has a comeager conjugacy class
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whenever R is a type III ergodic equivalence relation. We conjecture that however,
as soon as R is not hyperfinite, [R] does not have ample generics8.

Let us mention another result on full groups of type III which answers a question
which was asked by Houdayer and Paulin to the second author.

Theorem 20. Whenever R is a type III ergodic equivalence relation, its full group
has topological rank9 2.

Sketch of proof. First, one can use the ideas in [KW91] to show that [R] contains a
type III ergodic element T0 which is a non-singular odometer. Then, since by [GP07,
Lem. 5.2] the group of dyadic permutations is dense in [T0], the exact same proof as
for [LM15, Thm. 4.1] yields that one can find U ∈ [T0] of small support such that
whenever C ∈ [R] has order 3, then the closed subgroup generated by T and UC
contains [T0].

Now, using Proposition 11, one can show that the equivalence relation R is
generated by T0 and ϕ ∈ [[R]] whose range is disjoint from its domain and such that
µ(dom ϕ∪rngϕ) < 1. Then, again using Proposition 11, one can find ψ ∈ [[R0]] with
dom ψ = rngϕ and such that rngψ is disjoint from dom ϕ∪rngϕ: in the terminology
of [LM14], {ϕ, ψ} is a pre-3-cycle. Let C be the associated 3-cycle. Then one can
conclude that 〈T, UC〉 is a dense subgroup of [R] exactly as in [LM14], noting that
Kittrell and Tsankov’s theorem [KT10, Thm. 4.7] holds in the non-singular case.

Remark. Roughly speaking, the above result follows from the fact that any type
III ergodic equivalence relation has cost 1. Using the same proof as for [LM15, Prop.
5.1], one can show that for any type III ergodic equivalence relation R, the set of
pairs (T, U) ∈ (APER∩ [R])× [R] which generate a dense subgroup of [R] is a dense
Gδ set.
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